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ON A METHOD FOR OBTAINING APPROXIMATE SOLUTIONS 
TO STURM-LIOUVILLE PROBLEMS 

SERGE ABRATE 

ABSTRACT. A method presented recently to find approximate solutions to a 
Sturm-Liouville problem is shown to be a special case of a classical weighted 
residual method. The choice of approximation functions and convergence of 
the method are also examined. 

1. INTRODUCTION 

In a recent article [1], Chambers presented a method for obtaining an ap- 
proximate solution to the Sturm-Liouville problem defined by the differential 
equation 

(1.1) +d (p(x) dx) + q(x)u = f(x) 

for xl < x < x2, and the boundary conditions 

(1.2) -p(xl)u'(xl) + rlu(xl) = gl, p(X2)U'(X2) + r2U(X2) = g2. 

Integrating the differential equation (1.1) from xl to X2, one obtains the "con- 
sistency equation" 

{X2 {X2 

(1.3) I qudx + riu(xl) + r2u(x2)=J f dx + g1 + g2 

and one seeks an approximate solution of the form 

(1.4) w=a-a+ fx+yx2. 

The constants a, ,B and y are selected so that w satisfies the boundary con- 
ditions (equation (1.2)) and the consistency equation (1.3). 

The purpose of the present note is to show that this method is simply a 
particular case of a well-known variational approximation method for which 
convergence has been established and error analyses are available. 

2. WEIGHTED RESIDUAL METHOD 

Following the standard approach [2], multiplying the differential equation 
(1.1) by a test function il and integrating from xl to X2, gives 

(X2 {X2 fX2 

(2.1) [()p)/(]Xl2+ j rputdx + J 1qu dx= J l dx. 1- (XP( 
uY.1X Y.IY 
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Using the boundary conditions (1.2), we find 

ii(xI)rIu(xI) - t (xl)gl + i (x2)r2u(x2) - 1 (x2)g2 

(2.2) lX2 X2 lX2 + jX '(x)pu'dx + 17qu dx j lf dx. 

Equation (2.2) is the weak formulation of the problem defined by equations 
(1.1-2). An N-term approximate solution is sought in the form 

N 

(2.3) UN = Z cj1jq(x), 
j=l 

where the cj 's are constants to be determined. With the Petrov-Galerkin 
weighted residual method [2], N linearly independent test functions 7i may 
be taken to be different from the approximation functions bj . A system of N 
linear algebraic equations is obtained after substituting equation (2.3) into equa- 
tion (2.2). The unknown constants cj are determined by solving the system of 
linear algebraic equations 

(2.4) [kij]{cj} = {Fi}, 

where 
f 32 

kij = J [iijpo' + tliqqj] dx + ij(x2)r2qjj(x2) + i1i(xl)r,q$j(xj), 
(2.5) xl 

Fi = Ci(x2)g2 + 7i(xI)g1 + j ilf dx. 

When the test functions are the same as the approximation functions, the 
method is called the Bubnov-Galerkin method. 

The method presented by Chambers [1] can be seen as a one-term Petrov- 
Galerkin approximation with a polynomial approximation function and ? = 1 
since, after substituting ? = 1 into equation (2.2), the consistency equation 
(1.3) is recovered. The approximation function used satisfied both boundary 
conditions of the problem. 

In the following, we show that: (1) better results are obtained using more 
terms in the approximation (equation (2.3)); (2) the approximation functions 
need not satisfy the boundary conditions; (3) faster convergence is obtained 
when each approximation function satisfies the boundary conditions of the prob- 
lem. 

3. EXAMPLE 

For the example treated in [1], 

(3.1) p = q = r2= f = x2 =1, x =r =g1 =g2 = , 

the boundary conditions become 

(3.2) u'(O) = O, u(1) + u'(1) = O 

and the exact solution is given by 

(3.3) u = 1 - e-6cosh(x). 
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The test functions are taken as 

(3.4) ?1 = , i= 1,2,...,N. 

Three different approximations are obtained from different choices of the ap- 
proximation functions. 

Approximation I. First, consider polynomial approximation functions that sat- 
isfy the boundary conditions of the problem: 

(3.5) 01= x2 -3 
and, for i = 2 to N, 

(3.6) Xi =xi- i+ 1 i+ 
i +2~ 

Substituting equations (3.1, 3.4-6) into equations (2.4-5), we can determine 
approximations of any order. For a three-term approximation, 

- 14 19 29 

3 4810 
9 3 7 a 

(3.7) - -~ a2 

22 8 248 a3 } 
3 

From equation (3.6), the one-, two- and three-term approximations are obtained 
as 

(3.8) ul -4(x2-3) 

- )+1833 4 (3.9) u2=-1383%3(x2_+ 80 (2-33 

310= 
- 0.210707(x - 3) + 2.60750 x 102 (x2 - -x3) 

+ 2.19926 x 10-2 (x3 -_ x4) 

Equation (3.7) was also obtained in [1]. Results from equations (3.8-10) are 
compared with the exact solution in Table 1 for x = 0, 1/2, 1. As the num- 
ber of terms increases, the approximate solution rapidly converges to the exact 
solution. Therefore, the method used can produce very accurate solutions. 

Approximation II. Because of the boundary condition u'(0) = 0 and the fact 
that the differential equation remains unchanged when x is changed to -x, 
there is a strong indication that the solution is an even function. Of course, 
this is confirmed by the exact solution (equation (3.3)). Therefore, the approx- 
imation functions are taken to be polynomials with even powers of x. That 
is 

(3.11) ?>i=x~2i-2- 2i - l2i 2i+ 1 
for i > 1 . Results in Table 1 indicate a slightly faster convergence with this set 
of approximation functions. When available, special insight into the solution 
of the problem can be used in the selection of the approximation functions to 
speed up convergence, but is not needed. 
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TABLE 1. Comparison of approximate and exact solutions 

Solution Number x= 0 x = 1/2 x = 1 
of terms 

Exact 0.6321206 .5851696 .4323324 

Approx. I 1 0.6428571 0.5892857 0.4285714 
2 0.6317512 0.5859247 0.4320786 
3 0.6321217 0.5851687 0.4323320 

Approx. II 1 0.6428571 0.5892857 0.4285714 
2 0.6320960 0.5852211 0.4323144 
3 0.6321206 0.5851695 0.4323324 

Approx. III 1 0.5 0.5 0.5 
2 0.6551724 0.5517241 0.4482759 
3 0.6319520 0.5853326 0.4323882 
4 0.6321407 0.5853898 0.4323286 
5 0.6321209 0.5851780 0.4323324 

Approximation III. In this case, no attempt is made to select approximate 
functions that satisfy the boundary conditions of the problem. Taking 

(3.12) xi-, i N 

we find that the approximation converges to the exact solution (Table 1). It 
was also verified that the boundary conditions (equation (3.2)) are also very 
well approximated as N > 3. The results show that with Approximation III, 
convergence is slower than with Approximations I and II. 

Remark. Equation (1.1) can be written as 

(3.13) Au=f, 

where the operator A is defined as 

(3.14) A= -dx (xd + q(x). 

Using the results obtained in equation (2.2), we find the inner products 
(3.15) 

{X2 

(Au, n) = j -j * Au dx = ?1(xj)r1u(xl) - ?1(x1)g1 + i(x2)r2u(x2) - 11(X2)g2 

+X2 d X2 

+ /tl'(x)pu'dx + | l qu dx 
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and 
rX2 

(3.16) (f, C)= J ?f dx. 

Then, equation (2.2) can be written as 

(3.17) (Au, t) = (f, rl). 
The operator A is symmetric ((Au, C) = (u, A?n)) if g = g2= 0, and then it 
is also positive ((Au, u) > 0) . Therefore, according to the minimum functional 
theorem [2], the solution to the strong problem defined by equations (1.1, 2) 
corresponds to the minimum of the quadratic functional 
(3.18) 

Q(u) = (Au, u) - 2(f, u) = 6I(x1)rlu(xl) - 6(xl)gl + 6(x2)r2u(x2) - 6(x2)g2 
oX2 oX2 fX2 

+ J I'(x)pu'dx+ + rlqudx- 2 uf dx. 

Using the Rayleigh-Ritz method, one seeks an N-term approximation of the 
form given by equation (2.3), and the minimum of the functional Q is reached 
when the N equations 

N 

(3.19) Z(A0j, q$i)cj-(f, Xi) = 0 
j=l 

are satisfied. The weighted residual method adopted here is applicable to the 
most general Sturm-Liouville problem, whereas a quadratic functional Q can 
only be found when g1 = g2 = 0. However, when such a functional can be 
found, as with the present example, the Rayleigh-Ritz method can be used. 
It can be shown that approximation III above leads to the same set of equa- 
tions as the Rayleigh-Ritz approach using the approximation functions given by 
equations (3.12). 

4. CONCLUSIONS 

In this article, a general weighted residual approach for Sturm-Liouville prob- 
lems was presented. A method proposed recently by Chambers is shown to be 
a special case of the classical Petrov-Galerkin method. In addition, we show 
that the Petrov-Galerkin approach quickly converges to the exact solution even 
when approximation functions do not each satisfy the boundary conditions of 
the problem. However, faster convergence is obtained when each approxima- 
tion function does not satisfy the boundary conditions. The Petrov-Galerkin ap- 
proach does not require the existence of a quadratic functional to be minimized 
and can be used to solve all Sturm-Liouville problems. Quadratic functionals 
are shown to exist only for a restricted class of Sturm-Liouville problems. 
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